MATH 512 HOMEWORK 3

Due Friday, March 22

Problem 1. Suppose that $\mathbb{P} * \dot{\mathbb{Q}}$ is a two step iteration.

- (1) If G is \mathbb{P} -generic over V and H is $\dot{\mathbb{Q}}_G$ generic over V[G], show that $G * H := \{(p, \dot{q}) \mid p \in G, \dot{q}_G \in H\}$ is $\mathbb{P} * \dot{\mathbb{Q}}$ -generic over V.
- (2) Suppose K is $\mathbb{P} * \dot{\mathbb{Q}}$ -generic over V and define $G := \{p \in \mathbb{P} \mid (\exists \dot{q})((p, \dot{q}) \in K)\}$ and $H := \{\dot{q}_G \mid (\exists p)((p, \dot{q}) \in K)\}$. Show that G is \mathbb{P} -generic over V and H is $\dot{\mathbb{Q}}_G$ generic over V[G]

Problem 2. Show that $\mathbb{P} * \dot{\mathbb{Q}}$ has the κ -chain condition if and only if \mathbb{P} has the κ -chain condition and $1_{\mathbb{P}} \Vdash \dot{\mathbb{Q}}$ has the κ -chain condition.

Problem 3. Prove the following lemma: Suppose that κ is a regular uncountable cardinal and \mathbb{P}_{κ} is an iteration of length κ , such that at κ we take a direct limit, and $\{\alpha < \kappa \mid \mathbb{P}_{\alpha} \text{ is a direct limit }\}$ is stationary. Then if each \mathbb{P}_{α} has the κ -c.c., \mathbb{P}_{κ} also has the κ -c.c.

Recall that if U is a normal measure on κ , the Prikry poset to change the cofinality of κ to ω , defined from U has conditions of the form $\langle s, A \rangle$, where s is a finite increasing sequence of ordinals in κ and $A \in U$, and $\langle s', A' \rangle \leq \langle s, A \rangle$ if s is an initial segment of $s', s' \setminus s \subset A$, and $A' \subset A$.

Problem 4. Suppose that $j : V \to M$ is an elementary embedding with critical point κ . Let U be a normal measure on κ , and let \mathbb{P} be the Prikry poset defined from U. If G is \mathbb{P} -generic, show that j cannot be lifted to an embedding $j' : V[G] \to M^*$.

Problem 5. (Generalized Prikry lemma) Let \mathbb{P} be the Prikry poset defined from a normal measure U on κ , and suppose that D is a dense open subset of \mathbb{P} . Show that for all $\langle s, A \rangle$, there is some n and a measure one set $A' \subset A$, such that every $\langle t, B \rangle \leq \langle s, A' \rangle$ with |t| = |s| + n is in D.